The operator content of the ferromagnetic and antiferromagnetic spin-1 ZamolodchikovFateev quantum chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 231029
(http://iopscience.iop.org/0305-4470/23/6/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:02

Please note that terms and conditions apply.

COMMENT

The operator content of the ferromagnetic and antiferromagnetic spin-1 Zamolodchikov-Fateev quantum chain

D Baranowski† and V Rittenberg
Physikalisches Institut, Universität Bonn, Nussallee 12, D-5300 Bonn 1, Federal Republic of Germany

Received 1 September 1989

Abstract

The finite-size scaling spectra of the spin-1 Zamolodchikov-Fateev chain for an even and odd number of sites are presented. The operator content is given for free as well as toroidal boundary conditions. In the case of the antiferromagnetic chain we give separately the ferromagnetic and antiferromagnetic excitations.

The Zamolodchikov-Fateev spin-1 quantum chain is defined by the Hamiltonian:

$$
\begin{align*}
H=\mathscr{N}(\lambda) \sum_{j=1}^{N} & \left\{T_{j}-T_{j}^{2}-2(\cos \hat{\lambda}-1)\left(T_{j}^{\perp} T_{j}^{z}+T_{j}^{z} T_{j}^{\perp}\right)\right\} \\
& -2 \sin ^{2} \lambda\left[T_{j}^{z}-\left(T_{J}^{z}\right)^{2}+2\left(S_{j}^{z}\right)^{2}\right] \quad(0 \leq \lambda<\pi / 2) \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
T_{j}=T_{j}^{\perp}+T_{j}^{z} \quad T_{j}^{\perp}=S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y} \quad T_{j}^{z}=S_{j}^{z} S_{j+1}^{z} \tag{2}
\end{equation*}
$$

and $S_{j}^{x}, S_{j}^{y}, S_{j}^{z}$ matrices give the spin-1 representation of $\mathrm{SO}(3)$. The normalisation factor $\mathscr{N}(\lambda)$ is different for the ferromagnetic and antiferromagnetic case:

$$
\mathscr{N}(\lambda)=\left\{\begin{array}{ll}
\frac{-(\pi-i)}{\pi \sin 2 \lambda} & \text { ferromagnetic } \tag{3}\\
\frac{i}{\pi \sin 2 \lambda} & \text { antiferromagnetic }
\end{array} \quad i \neq 0 .\right.
$$

Various properties of the spectra of the Hamiltonian (1) and their finite-scaling limit have been previously studied using both analytic and numerical methods (Zamolodchikov and Fateev 1980, di Francesco et al 1988, Alcaraz and Martins 1989, and references therein). It is the aim of this paper to give a conjecture for the whole operator content of the model with free and toroidal boundary conditions (BC). This conjecture is based on all the known results as well as on our own numerical studies of chains up to 14 sites. The Hamiltonian (1) can be generalised to arbitrary spins (Sogo et al 1983, Babujian and Tsvelick 1986, Kirilov and Reshetikhin 1987a, b) and the

[^0]conformal structure of the spin-1 case will reveal what has to be expected for higher spin. The operator content for the spin- $\frac{1}{2}$ Heisenberg chain is already known (Alcaraz et al 1988).

The global symmetry of the infinite system is $O(2)$, the Hamiltonian (1) being invariant under the transformations

$$
\begin{equation*}
\left(S_{j}^{m}\right)^{\prime}=\sum_{n=-1}^{1} A^{m n} S_{j}^{n} \quad S_{j}^{ \pm 1}=S_{j}^{x} \pm i S_{j}^{y} \quad S_{j}^{o}=S_{j}^{z} \tag{4}
\end{equation*}
$$

where the 3×3 matrices $A^{m n}$ form the $\mathrm{O}(2)$ group

$$
\begin{equation*}
O(2) \simeq\left\{G(\theta) C^{\alpha} \mid \theta \in[0,2 \pi), \alpha=0,1\right\} \tag{5}
\end{equation*}
$$

where

$$
G(\theta)=\left(\begin{array}{ccc}
\mathrm{e}^{-\mathrm{i} \theta} & 0 & 0 \tag{6}\\
0 & 1 & 0 \\
0 & 0 & \mathrm{e}^{\mathrm{i} \theta}
\end{array}\right) \quad C=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

We now specify the boundary conditions of the Hamiltonian (1):
(a) Free boundary conditions $\left(H^{F}\right)$

$$
\begin{equation*}
S_{N+1}^{m}=0 \quad(m=0, \pm 1) \tag{7}
\end{equation*}
$$

(b) Toroidal boundary conditions $\left(H^{B}\right)$

$$
\begin{equation*}
S_{N+1}^{m}=\sum_{n=-1}^{1} \quad B^{m n} S_{1}^{n} \tag{8}
\end{equation*}
$$

where B is one of the matrices (6). Since two Hamiltonians $H^{B_{1}}$ and $H^{B_{2}}$ have the same spectrum if the group elements B_{1} and B_{2} belong to the same conjugacy class, we list the conjugacy classes of $O(2)$:

$$
\begin{align*}
& \{\mathbf{1}\} \tag{I}\\
& \{\mathbf{G}(\pi)\} \tag{III}\\
& \{\mathbf{G}(\theta), G(-\theta)\} \bigvee \theta \neq 0, \pi \tag{9}\\
& \{\mathbf{G}(\theta) C \mid \theta \in[0,2 \pi)\} . \tag{IV}
\end{align*}
$$

The global symmetry of the Hamiltonian with free $\left(H^{F}\right)$, periodic ($B=1$) and antiperiodic ($B=G(\pi)$) BC is $\mathrm{O}(2)$. The symmetry for the elements of the conjugacy classes (III) is SO(2). In all these cases the 'charge' operator

$$
\begin{equation*}
\hat{Q}=\sum_{j=1}^{N} S_{j}^{o} \tag{10}
\end{equation*}
$$

with eigenvalues Q commutes with the Hamiltonian. If the $B C$ is given by one of the elements of the conjugacy class (IV) the symmetry is $Z_{2} \otimes Z_{2}$. In what follows we will take as representative for this class the element with $\theta=0: B=C$; in this case the
$Z_{2} \otimes Z_{2}$ group is generated by C and $G(\pi)$. It is convenient to study together the BC belonging to the conjugacy classes (I), (II) and (III):

$$
\begin{equation*}
S_{N+1}^{ \pm 1}=\mathrm{e}^{2 \pi i \ell} S_{1}^{ \pm 1}(0 \leq \ell<1) \quad S_{N+1}^{0}=S_{1}^{0} \tag{11}
\end{equation*}
$$

We now give the operator contents. We start with the ferromagnetic case (to our knowledge this case has not been up to now considered in the literature). In order to compute the finite-size limit spectra one does not have to distinguish between the cases of even and odd number of sites (this is different for the antiferromagnetic chain). The central charge of the Virasoro algebra is $c=1$ and for the toroidal BC (11) one has the following partition function in the charge sector Q (Q integer):

$$
\begin{equation*}
\mathscr{E}_{Q}^{f}=\operatorname{Tr}\left(z^{L_{o}} \bar{z}^{\bar{L}_{o}}\right)=\sum_{n=-x}^{\infty} z^{[Q+4 h(f+n)]^{2} / 4 h} \bar{z}^{[Q-4 h(\ell+n)]^{2} / 4 h} \Pi_{v}(z) \Pi_{v}(\bar{z}) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& h=\frac{\pi}{4 \lambda} \quad\left(\frac{1}{2}<h<\infty\right) \\
& \Pi_{v}(z)=\prod_{m=1}^{\infty}\left(1-z^{m}\right)^{-1} \tag{13}
\end{align*}
$$

and L_{0}, \bar{L}_{0} are generators of Virasoro algebras. This expression coincides with the operator content of the spin- $\frac{1}{2}$ chain (see Alcaraz et al 1988, equation (15)) with two differences: there the domain of h was different ($\frac{1}{4} \leq h<\infty$) and Q could be half-integer (for an odd number of sites). The operator content for free BC and for BC corresponding to the conjugacy class (IV) are the same as for the spin- $\frac{1}{2}$ chains with the same two differences.

We consider now the antiferromagnetic case (see equation (3)). Here we have to distinguish between the cases of even and odd values of the charge Q and the number of sites:

$$
\begin{equation*}
Q=2 k+\alpha \quad N=2 n+\beta \quad\left(\alpha, \beta=0,1 \in Z_{2}\right) \tag{14}
\end{equation*}
$$

The central charge of the Virasoro algebra is $c=3 / 2$ and the operator content for free BC reads:

$$
\begin{equation*}
\mathscr{E}_{2 k+\alpha ; \beta}(z)=\operatorname{Tr}\left(z^{L_{0}}\right)=R_{\alpha+\beta}(z) z^{(2 k+\alpha)^{2} / 4 h} \Pi_{v}(z) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
h=[2(1-2 \lambda / \pi)]^{-1} \quad R_{0}(z)=\chi_{0}(z) \quad R_{1}(z)=\chi_{1 / 2}(z) \tag{16}
\end{equation*}
$$

$\chi_{0}(z)$ and $\chi_{1 / 2}(z)$ are the character expressions of the unitary irreps of the Virasoro algebra with $c=1 / 2$ (Ising model) and highest weights $\Delta=0$ and $1 / 2$ respectively. As in the $c=1$ case (Dijkgraaf et al 1988, Baake et al 1988) for rational value of h the spectra can be organised in terms of character functions of extended algebras. Let us now give a few examples. For $h=1 / 2$ we have

$$
\begin{equation*}
\mathscr{E}^{0}(z)=\sum_{Q=-\infty}^{\infty} \mathscr{E}_{Q, 0}(z)=\chi_{0}^{\mathrm{SU}(2)} \quad \mathscr{E}^{1}(z)=\sum_{Q=-\infty}^{\infty} \mathscr{E}_{Q, 1}(z)=\chi_{1 / 2}^{\mathrm{SU}(2)} \tag{17}
\end{equation*}
$$

where $\chi_{\Delta}^{\mathrm{SU}(2)}$ are the characters of the $\mathrm{SU}(2) \mathrm{Kac}-$ Moody algebra with highest weight Δ (Goddard et al 1986). For $h=1 / 4$ we have

$$
\begin{equation*}
\mathscr{E}^{0}(z)=\chi_{0}^{N=2} \quad \mathscr{E}^{1}(z)=\chi_{1 / 4}^{N=2} \tag{18}
\end{equation*}
$$

where the $\chi_{\Delta}^{N=2}$ correspond to the $N=2$ superconformal case (Ravanini and Yang 1987). If we take $h=1 / 10$ we have

$$
\begin{equation*}
\mathscr{E}^{0}(z)=\chi_{0}^{\mathrm{ZF}}+\chi_{1}^{\mathrm{ZF}} \quad \mathscr{E}^{1}(z)=\chi_{1 / 2}^{\mathrm{ZF}}+\chi_{5 / 2}^{\mathrm{ZF}} \tag{19}
\end{equation*}
$$

where $\chi_{\Delta}^{\mathrm{ZF}}$ are characters of the Zamolodchikov-Fateev algebra (Zamolodchikov and Fateev 1985, Qiu 1988, Ravanini and Yang 1988).

We now consider toroidal BC. In this case we have to distinguish between ferromagnetic excitations which start at momentum zero and the antiferromagnetic ones which start at a Z_{N} momentum $p=N / 2$ (for N even) an $p=(N \pm 1) / 2$ (for N odd). We will denote by $\gamma=0$ the ferromagnetic excitations and by $\gamma=1$ the antiferromagnetic ones. For the boundary condition (11), in the charge sector Q, an even or odd number of sites (see equation (14)) and an excitation γ we have the following partition function:

where

$$
\begin{equation*}
\mathscr{F}_{Q}^{\prime, \delta}(z, \bar{z})=\sum_{n=-\infty}^{\infty} z^{[Q+2 h(\delta+2 n+2 \epsilon)]^{2} / 16 h} \bar{z}[Q-2 h(\delta+2 n+2 \ell)]^{2} / 16 h \Pi_{v}(z) \Pi_{v}(\bar{z}) \tag{21}
\end{equation*}
$$

$\delta=0,1$ and

$$
\begin{align*}
& R_{0}^{0}(z, \bar{z})=\chi_{0} \bar{\chi}_{0} \\
& R_{1}^{0}=R_{0}^{1}=\chi_{1 / 16} \bar{\chi}_{1 / 16} \tag{22}\\
& R_{1}^{1}(z, \bar{z})=\chi_{0} \bar{\chi}_{1 / 2}+\chi_{1 / 2} \bar{\chi}_{0}
\end{align*}
$$

where again $\chi_{0}, \chi_{1 / 16}, \chi_{1 / 2}$ are characters of the $c=1 / 2$ Virasoro algebras. As in the $c=1$ case where the partition function (12) can be used to derive partition functions for sytems with $c<1$ (Alacaraz et al 1989, Pasquier and Saleur 1989), the partition functions (20) can be used to derive partition functions for the $N=1$ superconformal series (Capelli 1987). This will be the subject of a separate publication (Baranowski et al 1990).

We finally consider the BC corresponding the conjugacy class (IV) taking $\mathrm{B}=\mathrm{C}$ (see equations (6) and (8)). It is convenient to separate the spectra considering the sectors given by the charge conjugation operation C with eigenvalues $(-1)^{\epsilon}(\epsilon=0,1)$ and $G(\pi)$ with eigenvalues $(-1)^{\delta}(\delta=0,1)$. As for the spin- $\frac{1}{2}$ chain (Alcaraz et al 1988 equation (16)) we expect to be able to write the partition functions in terms of the characters $\chi_{\Delta}^{N=2 . T W}$, corresponding to the $N=2$ twisted superconformal algebra, which coincide with those of the twisted SU(2) Kac-Moody algebra (Rittenberg and Schwimmer 1987 and references therein) since the operator content is independent of h. For $\mathrm{c}=3 / 2$ we have $\Delta=1 / 8 r(r=1,2)$ and the character expressions are

$$
\begin{equation*}
\chi_{1 / 8 r}^{N=2, \mathrm{TW}}(z)=z^{1 / 8 r} \prod_{m=1}^{\infty} \frac{\left(1+z^{m / 2}\right)}{\left(1-z^{m / 2}\right)} \sum_{n=-x}^{\infty}(-1)^{n} z^{n^{2}+n(1-r / 2)} . \tag{23}
\end{equation*}
$$

It is useful to consider levels with a separation given by integers:
$\chi_{1 / 16}^{N=2 . \mathrm{TW}}(z)=\Psi_{1 / 16}(z)+\Psi_{9 / 16}(z) \quad \chi_{1 / 8}^{N=2 . T W}(z)=\Psi_{1 / 8}(z)+\Psi_{5 / 8}(z)$.
For the partition functions $\mathscr{G}_{\epsilon, \delta, \beta}^{\prime}$ (see equation (14)) we have:

$$
\begin{align*}
& \mathscr{G}_{000}^{0}+\mathscr{G}_{010}^{0}=\mathscr{G}_{101}^{1}+\mathscr{G}_{111}^{1}=\Psi_{1 / 16} \bar{\Psi}_{1 / 16}+\Psi_{9 / 16} \bar{\Psi}_{9 / 16} \\
& \mathscr{G}_{100}^{0}+\mathscr{G}_{110}^{0}=\mathscr{G}_{001}^{1}+\mathscr{G}_{011}^{1}=\Psi_{1 / 16} \bar{\Psi}_{9 / 16}+\Psi_{9 / 16} \bar{\Psi}_{1 / 16} \\
& \mathscr{G}_{001}^{0}=\mathscr{G}_{011}^{0}=\mathscr{G}_{000}^{1}=\mathscr{G}_{010}^{1}=\Psi_{1 / 8} \bar{\Psi}_{1 / 8}+\Psi_{5 / 8} \bar{\Psi}_{5 / 8} \\
& \mathscr{G}_{101}^{0}=\mathscr{G}_{111}^{0}=\mathscr{G}_{100}^{1}=\mathscr{G}_{110}^{1}=\Psi_{1 / 8} \bar{\Psi}_{5 / 8}+\Psi_{5 / 8} \bar{\Psi}_{1 / 8} . \tag{25}
\end{align*}
$$

This completes the list of the operator content.

Acknowledgments

We would like to thank F Alcaraz and G Schütz for useful discussions.

References

Alcaraz F C, Baake M, Grimm U and Rittenberg V 1988 J.Phys. A: Math. Gen. 21 L117
Alacaraz F C, Grimm U and Rittenberg V 1989 Nucl. Phys. B 316735
Alcaraz F C and Martins M J 1989 J.Phys.A: Math.Gen. 221829
Baake M, Christe P and Rittenberg V 1988 Nucl. Phys. B 300637
Babujan H and Tsvelick A M 1986 Nucl. Phys. B 257253
Baranowski D, Grimm U, Rittenberg V and Schütz G 1990 to be published
Capelli A 1987 Phys. Lett. 185B 82
di Francesco P, Saleur H and Zuber J-B 1988 Nucl. Phys. B 300393
Dijkgraaf R, Verlinde E and Verlinde H 1988 Commun. Math. Phys. 115649
Goddard P, Kent A and Olive D 1986 Commun. Math. Phys. 103105
Kirilov A N and Reshetikhin N Y 1987a J. Phys. A: Math. Gen. 201565

- 1987b J. Phys. A: Math. Gen. 201585

Pasquier V and Saleur H 1989 Nucl. Phys. B to be published
Qiu Z 1988 Nucl. Phys. B 295171
Ravanini F and Yang S-K 1987 Phys, Lett. 193B 202

- 1988 Nucl. Phys. B 295262

Rittenberg V and Schwimmer A 1987 Phys. Lett. 195B 135
Sogo K, Akutsu Y and Abe T 1983 Prog. Theor. Phys. 70730
Zamolodchikov A B and Fateev V A 1980 Nucl. Phys. B 322

- 1985 Sov. Phys.-JEPT 62215

[^0]: \dagger Present address: Physikalisches Institut der Universität Bayreuth, Postfach 1012 51, D-8580 Bayreuth, Federal Republic of Germany

